
Implementing Mixed-Precision Iterative Refinement
in STRUMPACK

Michael Neuder with support of Dr. Pieter Ghysels

AM 205 Final Project

1 Introduction

For my final project, I wanted to contribute to an open source numerical analysis library.
On the recommendation of Dr. Rycroft, I explored the Scalable Solvers Group at Lawrence
Berkeley National Lab and found the STRUMPACK project. I reached out to Dr. Pieter Ghysels,
who is the lead developer, and he was gracious enough to help me start contributing and
suggested this project for me to work on. I included the important pieces of code I wrote
for this project in the code/ directory of the submission directory. This is because the files I
edited in the live repo are changing as the library is under active development, so attaching
the code here is the best way to demonstrate what I wrote, even though it isn’t directly
runnable. See the installation instructions if you want to run the library locally.

My project was implementing a mixed-precision routine to factor and solve the matrix
equation Ax = b. In this mixed-precision routine, the factorization is done in single precision,
float in C++, while the calculation of the residual and correction terms are done in, double in
C++. This can lead to a significant performance improvement over doing the entire algorithm
in double precision, while still providing an answer accurate to double precision. This
improvement comes from the fact that single precision operations can be executed more
efficiently on the hardware. Since the factorization is the bottleneck of the algorithm (the
only O(n3) step), doing the factorization in single precision allows for a dramatic speedup.
I found that the mixed-precision solver out performs the original solver on both CPU and
GPU hardware.

Outline: The remainder of Section 1 outlines the prerequisite content. Section 2 describes
the implementation of the mixed-precision solver. Section 3 presents the test equation
used to benchmark as well as the performance results on both consumer grade and high
performance computing CPUs and GPUs. Section 4 presents an initial analysis of how
the mixed-precision solver performs on ill-conditioned matrices. Section 5 concludes and
presents avenues for future work.

1

https://portal.nersc.gov/project/sparse/strumpack/master/installation.html

1.1 STRUMPACK

The STRUctured Matrix PACKage (STRUMPACK) is a C++ software library provid-
ing linear algebra routines. See Ghysels et al. [2017], Ghysels et al. [2016], and Rouet
et al. [2016] for context on the different functionality of the package. I implemented the
StrunmpackSparseSolverMixedPrecision class (see StrumpackSparseSolverMixedPrecision.hpp
in the code/ directory attached with this writeup). Additionally, I added matrix casting sup-
port to the DenseMatrix and CSRMatrix classes (see DenseMatrix.hpp & CSRMatrix.hpp
respectively). Finally, I wrote two tests to evaluate the performance of the mixed-precision
solver. First, testPoisson3dMixedPrecision.cpp benchmarks the performance of the
mixed-precision solver versus the original solver. Second, testHilbertMixedPrecision.cpp
comparse the two solvers perfromance on example ill-conditioned matrices.

1.2 Iterative refinement

Iterative refinement is a simple algorithm to improve the accuracy of an approximate
solution x̂n to a linear system Ax = b [Stewart, 1973] [Moler, 1967]. The process is broken
down into the following three steps:

1. Compute the residual: r = b−Ax̂n.

2. Solve for the correction term: Ac = r.

3. Modify the approximate solution: x̂n+1 = x̂n + c.

This process is repeated until the r < ε, where ε is the tolerance specified by the implementer.
See Higham [1997] for a thorough analysis of the error associated with iterative refinement.

1.3 Mixed-precision

Buttari et al. [2007] present the idea of using a mixed-precision approach of the iterative
refinement. Algorithm 1 below is presented as Algorithm 2 in Buttari et al. [2007], and
it is useful to include here in order to understand exactly how the solver works. I denote

2

operations that use single precision as subscript f and double as subscript d.
Algorithm 1: Mixed-precision iterative refinement
1 Af = cast_down(Ad, float);
2 bf = cast_down(bd, float);
3 Lf , Uf , Pf = lu_factor(Af);
4 xf = solve(Lf , Uf , Pf , bf);
5 xd = cast_up(xf , double);
6 rd = bd - Ad xd;
7 while rd > tolerance do
8 rf = cast_down(rd, float);
9 cf = solve(Lf , Uf , Pf , rf);

10 cd = cast_up(cf , double);
11 xd += cd;
12 rd = bd - Ad xd;
13 end

Let’s unpack this a bit. There are two types of casting taking place, referred to above as
cast_up and cast_down, which map float→double and double→float respectively. On
line 3, the LU factorization (with partial pivoting) takes place. Again, this is the bottleneck
of the algorithm with a time complexity of O(n3), and is done in single precision. On lines
4-6, the initial guess solution of x is calculated and cast to double in order to solve for
the initial value of the residual, rd. The while loop continues until this residual is below
a specified tolerance. In my implementation, I set this tolerance to 1 × 10−15 because this
is roughly the precision we can expect for a double solution. The body of the while loop
executes the calculation of the correction term and the modification of our solution x, which
corresponds to Steps 2 & 3 in Section 1.2. In total, we can see that only the calculation of
the residual and the update to the intermediate solution are done in double precision. See
Appendix A Buttari et al. [2007] which uses results from Higham [2002] to perform an error
analyses of Algorithm 1.

2 Implementation

With this prerequisite information, I present my implementation of mixed-precision it-
erative refinement for STRUMPACK. The implementation is best understood in two parts: 1.
Matrix casting (Section 2.1) 2. Mixed-Precision Solver (Section 2.2).

2.1 Matrix casting

STRUMPACK implements many different matrix representations. I needed to add casting
support for the CSRMatrx and DenseMatrix classes.

3

2.1.1 CSRMatrix

The CSRMatrix, or Compressed Sparse Row Matrix, class is used to store the matrix A.
This representations takes advantage of the fact that A is sparse by only storing the values
of the non-zero elements of the matrix. The representation is composed of three parts, which
can be found in the CompressedSparseMatrix.hpp file:

1. A vector of row indices. std :: vector<integer_t> ptr_;

2. A vector of column indices. std :: vector<integer_t> ind_;

3. A vector of values. std :: vector<scalar_t> val_;

Before describing each of these it is worth noting that this class is templated on two types:
integer_t and scalar_t. The integer_t dictates what type of integer to use for the vectors
of 1 & 2 above, which end up just being indices of the matrix. For the remainder of this work,
we will let integer_t = int, because the matrices we test on do not need extended integer
representations. The scalar_t is the type of the values that are elements of the matrix,
and is what the casting code needs to switch (e.g., we need to map CSRMatrix<float,int>
→ CSRMatrix<double,int>). Now consider 1,2, & 3 from above:

1. The ith element of this vector represents the starting point of the ith row in the column
indices vector, ind_.

2. The jth element of this vector represents the column of the jth value in the values
vector, val_.

3. This vector holds the values of the matrix.

This is best understood through an example, which I will copy from the STRUMPACK docu-
mentation. Consider the sparse matrix A:

A =

8.2 0.1 3.1
0.0 −4.8
6.2 1.1 2.6

−1.0
99.9 4.0

 ,
where the empty elements are zero. Then the vectors 1,2, & 3 would be:

1. std :: vector<integer_t> ptr_ = [0, 3, 5, 8, 9, 11]

2. std :: vector<integer_t> ind_ = [0, 1, 4, 0, 2, 0, 1, 3, 2, 3, 4]

3. std :: vector<integer_t> val_ = [8.2, 0.1, 3.1, 0.0, −4.8, 6.2, 1.1, 2.6, −1.0, 99.9, 4.0] .

4

https://github.com/pghysels/STRUMPACK/blob/master/src/sparse/CompressedSparseMatrix.hpp#L447
https://portal.nersc.gov/project/sparse/strumpack/master/sparse_example_usage.html#autotoc_md5
https://portal.nersc.gov/project/sparse/strumpack/master/sparse_example_usage.html#autotoc_md5

So vector 3 contains all of the values from A. Vector 2 contains the indices of each value in
it’s respective row. Vector 1 contains the starting point of each row in Vector 2, as well as
the end index of the last row.

With this understanding of how matrices are stored into CSRMatrix objects, it is clear
that in order to change the scalar_t of the matrix, we only need to change the type of
Vector 3, which holds the actual values of the matrix. This cast can be done implicitly in
the construction of a std::vector, which allows the final version of the casting code to be
quite simple. See attached CSRMatrix.cpp.

2.1.2 DenseMatrix

The DenseMatrix class is used to represent all the vectors in the iterative refinement
algorithm (x, c, r, b). This class is a much simpler representation. The values of the ma-
trix are again templated on scalar_t, and are stored in a raw pointer called data_, see
DenseMatrix.hpp. Thus the casting of the matrix just involves iterating over all the elements
of the matrix and casting the values to the new type cast_t. See attached DenseMatrix.cpp.

2.2 Mixed-Precision Solver

With the matrix casting code in place, I was able to implement the Mixed-precision itera-
tive refinement solver. The StrumpackSparseSolverMixedPrecision class implements the
solver (see attached StrumpackSparseSolverMixedPrecision.hpp). The mixed-precision
solver is templated on a factor_t as well as refine_t (in the typical case factor_t=float
and refine_t=double as described in Algorithm 1). This class is templated to be compati-
ble with real numbers (float, double) as well as complex numbers (std::complex<float>,
std::complex<double>). I think it is easiest to understand how the solver works by first
walking through a small example of the usage.

Listing 1: Simplified Mixed-precision solver usage
1 #inc lude " StrumpackSparseSolverMixedPrec is ion . hpp"
2
3 i n t main () {
4 // Construct mixed−p r e c i s i o n s o l v e r and s e t t o l e r an c e .
5 SparseSo lverMixedPrec i s ion<f l o a t , double , int> spss_mixed ;
6 spss_mixed . opt ions () . set_abs_tol (1 e−15);
7
8 // Spec i f y dimension o f A, which w i l l be (NxN) .
9 const i n t N = 25
10
11 // Make use o f a u x i l i a r y func t i on to generate A.
12 CSRMatrix<double , int> A = GenerateMatrix (N) ;
13
14 // Construct ing b and x . Not ice that b i s const .

5

https://github.com/pghysels/STRUMPACK/blob/master/src/dense/DenseMatrix.hpp#L141

15 const DenseMatrix<double> b = GenerateRandomVector (N) ;
16 DenseMatrix<double> x = GenerateZeroVector (N) ;
17
18 spss_mixed . set_matrix (A) ;
19 spss_mixed . f a c t o r () ;
20 spss_mixed . s o l v e (b , x) ;
21 }

Now let’s take a closer look at what is going on.

1. Line 5-6: The solver is created with the template arguments float, double, int.
This means that the factorization will take place with float but the residual will be
calculated with double. The third template parameter of int can be ignored (it is
just what type to use to index the matrices). Line 6 sets the tolerance to near the
limit of a double precision number.

2. Line 8-12: First we specify the size of our matrix to be 25, and then we construct A
using an auxiliary function (omitted from code sample for brevity). Notice that the
values of the matrix have type double.

3. Line 14-16: Now we construct x and b which are both dense matrices with type
double. Notice that we initial b to some random vector (could alternatively be a
solution specified by the user), and also that it is const, meaning our algorithm will
not modify any of the values. We initalize x to zeros because its state doesn’t matter
as it will be overwritten by the solver.

4. Line 18-20: First, we set the matrix of the solver. Then we factor A and solve for x.

This is the interface and example usage. Now let’s go a bit deeper to understand how this
works. One of the most important features of the mixed-precision solver is that it owns an
private instance of the original StrumpackSparseSolver that is templated on float. When
the .set_matrix interface is called on the mixed solver, two copies of the matrix are saved.
The first remains in double and is owned directly by the mixed solver. The second is a
version cast to float and used to initialize the StrumpackSparseSolver. Next, .factor()
is called, which simply calls the exact same interface on the StrumpackSparseSolver. In
this way, the factorization is done in single precision. Hopefully this has all been pretty
straightforward. The last piece of the puzzle is understanding what happens when we call
.solve(x,b) on the mixed solver.

2.3 Solve

This is where the bulk of Algorithm 1 takes place. At this point, these are the components
that we have:

1. A factorized version of A, that is type float.

6

2. A non-factorized version of A, that is type double.

3. The vectors b, x which are both type double.

Now we enter the while loop of Algorithm 1. At each iteration, we solve for the correction
term, cast the correction to double and adjust our solution x before checking if the residual
is below the tolerance. The key to understanding here is that the solve for the correction
term is done on the StrumpackSparseSolver, which again is templated on float. In code:

Listing 2: Simplified Mixed-precision solve
1 auto solve_func = [&] (DenseMatrix<double>& r) {
2 DenseMatrix<f l o a t > new_x(r . rows () , r . c o l s ()) ;
3 DenseMatrix<f l o a t > cast_b = cast_matrix<double , f l o a t >(r) ;
4 // Solve f o r c o r r e c t i o n term .
5 solver_ . s o l v e (cast_b , new_x) ;
6 // Set r equal to c o r r e c t i o n .
7 r = cast_matrix<f l o a t , double >(new_x) ;
8 } ;
9 i t e r a t i v e : : I t e ra t iveRe f inement<double , int >(
10 A_d, solve_func , x_d , b_d) ;

First, look at the call to iterative::IterativeRefinement on line 7. This function handles
the calculation of the residual as well as the updates to x, which is why it is passed Ad, xd, bd.
The second argument to the iterative refinement call is a std::function that takes the resid-
ual and sets overwrites the residual value with the correction term. This is what the lambda
function on lines 1-8 is doing. Lastly, notice that the solve on line 5 is called on the float
solver, but the residual and correction terms are still in double, which is why the cast calls
at lines 3 and 7 are necessary. See attached StrumpackSparseSolverMixedPrecision.hpp
for the extra details of the solve.

3 Results

Now we can examine the results of benchmarking this code on different hardware. We an-
alyze the performance by comparing it to the performance of the original StrumpackSparseSolver
that is templated on double.

3.1 Poisson Equation

We use the 3-dimensional Poisson Equation to evaluate the performance of the mixed-
precision solver:

−∇2u = f(x, y, z) (1)

= −
(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
.

7

We use the finite difference approximation of the second derivative for each variable:

∂2u

∂x2
≈
ui+1,j,k − 2ui,j,k + ui−1,j,k

∆x2
(2)

∂2u

∂y2
≈
ui,j+1,k − 2ui,j,k + ui,j−1,k

∆y2

∂2u

∂z2
≈
ui,j,k+1 − 2ui,j,k + ui,j,k−1

∆z2
.

Let ∆x = ∆y = ∆z = h. Then we have the full discretization:

−∇2u ≈
ui+1,j,k + ui,j+1,k + ui,j,k+1 − 6ui,j,k + ui−1,j,k + ui,j−1,k + ui,j,k−1

h2
. (3)

Let n be the number of grid points used for each coordinate. Figure 1 shows the sparsity
pattern of this differentiation matrix for n = 4. This is a good test equation because it is
structured, sparse, square matrix and the dimension grows as n3, so it is easy to get very
large matrices.

Figure 1: Sparsity pattern of the 3d Poisson Equation differentiation matrix for n = 4.

8

Figure 2: Results for the Ryzen 9 3950X CPU. The top row shows results on linear axes,
while the second row is log-log.

3.2 Consumer-grade hardware

First we can examine the performance of the mixed-precision solver on consumer-grade
CPUs and GPUs.

3.2.1 AMD Ryzen 9 3950X CPU

Figure 2 Shows results for the Ryzen 9 3950X CPU, which is a high-end desktop pro-
cessor. The top row of plots show the data on linear axes, while the bottom row shows the
same data on a log-log scale. The three columns correspond are factorization time, solve
time, and total time. In each plot the blue squares represent the original, non-mixed, solver,
while the red circles represent the mixed-precision solver.

We see that the factorization is much faster on the mixed solver, because it is being done
in float instead of double. This is where we get most of our performance improvement. In
the solve, the mixed solver is takes longer. This also matches our expectation because the
iterative refinement will require several iterations to reach the tolerance of 10−15, because
it is doing the inner solve in single precision while updating the residual and the correction
term in double precision. The total time ends up being much faster for the mixed-precision
solver. Again this is what we expect because the dominant term of the complexity of the
algorithm is the LU factorization. Through the use of SIMD1 instructions we can expect

1single instruction multiple data

9

that floating point operations in single precision will be twice as fast as double precision.
We can check this by taking the raio of the total time for each solver. This ratio for the last
six data points, n = 95, 100, 105, 110, 115, 120, is,[

2.00303985 1.95618525 1.9660357 1.89945729 1.93212333 1.94289973
]
.

Thus we can conclude that we are almost getting a full 2x speedup by using the mixed-
precision solver.

3.2.2 Nvidia GeForce RTX 2060 GPU

The performance improvement of the mixed-precision solver is even more evident when
using consumer grade GPUs.

Figure 3: Results for the Nvidia GeForce RTX 2060 GPU.

In this case, the hardware can execute single precision operations about 8x faster than
double precision. Again looking at the ratio of the last 6 data points we see very promising
results:[

6.41441035 6.90530708 7.28564254 7.74923386 8.06006752 8.5145143
]
.

So we are almost maxing out the performance improvement that we hope for.

3.3 High Performance Computing Hardware

We also were able to get performance results for better hardware. Dr. Ghysels has access
to the Summit supercomputer at Oak Ridge, which has some of the best hardware available.

10

Since HPC hardware is optimized for double precision operations, we find our results are
reduced. First, we ran the benchmark on a IBM Power9 CPU. I will exclude the full image
results, but again the last five ratios of the original over mixed-precision total time are:[

1.40328584 1.48871594 1.55996121 1.55520713 1.62510489 1.60323937
]
.

So in this case we are getting closer to a 1.5x improvement, which is still decent, but not as
conclusive as our 2x on the AMD CPU. The last piece of hardware we ran the benchmark
on was a Nvidia Tesla v100 GPU, which is really one of the top pieces of hardware available.
The improvements were:[

1.82562197 1.6966471 1.77399679 1.78512899 1.80887783 1.87944244
]
.

These seem to be nearing 2x, which is about the best we can hope for on this specific
hardware. So overall, the user will see much larger performance improvements on consumer
hardware as compared to HPC-grade.

One last visualization that helps emphasize why the mixed precision solver out performs
the original is looking at the percentage of the time spent doing each component of the
algorithm, which is shown in Figure 4.

Figure 4: Proportion of time spent on each component for the AMD CPU as a function of
n.

We can see that as n grows, the factorization begins to dominate the runtime for each of
the solvers. This makes sense because it has the highest computational complexity. We see
that for the mixed-precision solver, a bigger chunk of the time is spent on the solve, which
also makes sense because more iterative refinement loops are required.

11

4 Ill-conditioned matrices

One last analysis that I wanted to explore per the recommendation of Dr. Rycroft was
how the mixed precision solver worked on ill-conditioned matrices. Because the factorization
takes place in single precision, we would expect that the mixed precision solver would perform
worse than a fully double precision solver. To test this, I compared how the original vs mixed-
precision solvers performed on the Hilbert Matrix. The Hilbert Matrix is a n × n square
matrix where each element is defined as,

H(i, j) =
1

i+ j + 1
for i = 0, 1, ..., n− 1 and j = 0, 1, ..., n− 1.

So the 5× 5 Hilbert Matrix is,

H =

1 1/2 1/3 1/4 1/5

1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9

 .
This matrix is ill-conditioned. Figure 5 plots the condition number and minimum Eigen
value for the Hilbert matrix of size n× n.

Figure 5: Condition number and minimum Eigen values of the Hilbert matrix as a function
of n.

When running the mixed-precision solver on this matrix, I found that it did not find
a solution past n = 7. This value makes sense because at that point the minimum Eigen
value is falling below the accuracy of a single precision float (around 10−8). The full double
precision solver had no trouble finding the results all the way up to n = 13, at which point
the minimum Eigen values are below 10−16 and the results will stop making sense. So this
demonstrates that in the case of ill-conditioned matrices, it is a much better option to use
the fully double solver as opposed to the mixed-precision solver.

12

5 Conclusion

There are many extensions to this work. The simplest next step is to add support
for mixed-precision solvers to distributed matrices. STRUMPACK supports distributed
memory matrices through the open MPI interface and it would be cool if those matrices
could also be solved with mixed-precision. This involves writing the matrix casting code
for distributed matrices, as well as making a new class of solver which uses these matrices.
It would also be worthwhile to explore more thoroughly how the mixed-precision solver
operates in the situation of ill-conditioned matrices. I examined only the Hilbert matrix,
which is only a single example. It would be good to verify these result on more examples.
There are also other iterative algorithms that may converge more rapidly than standard
iterative refinement (Generalized residual method and other Krylov methods for example),
and it would be good to support mixed-precision for those algorithms.

This was an excellent project and I am very grateful to Dr. Ghysels for taking the time
to meet with me and help come up with an appropriate project. There is still plenty of
work to do and I plan on continuing to contributing. Thanks to Dr. Rycroft for helpful
discussions as well as the entire AM 205 teaching staff for an excellent course and semester!

References

Pieter Ghysels, Xiaoye Sherry Li, Christopher Gorman, and François-Henry Rouet. A robust
parallel preconditioner for indefinite systems using hierarchical matrices and randomized
sampling. In 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 897–906. IEEE, 2017.

Pieter Ghysels, Xiaoye S Li, François-Henry Rouet, Samuel Williams, and Artem Napov.
An efficient multicore implementation of a novel hss-structured multifrontal solver using
randomized sampling. SIAM Journal on Scientific Computing, 38(5):S358–S384, 2016.

François-Henry Rouet, Xiaoye S Li, Pieter Ghysels, and Artem Napov. A distributed-
memory package for dense hierarchically semi-separable matrix computations using ran-
domization. ACM Transactions on Mathematical Software (TOMS), 42(4):1–35, 2016.

Gilbert W Stewart. Introduction to matrix computations. Elsevier, 1973.

Cleve B Moler. Iterative refinement in floating point. Journal of the ACM (JACM), 14(2):
316–321, 1967.

Nicholas J Higham. Iterative refinement for linear systems and lapack. IMA Journal of
Numerical Analysis, 17(4):495–509, 1997.

Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek, and Jakub
Kurzak. Mixed precision iterative refinement techniques for the solution of dense linear
systems. The International Journal of High Performance Computing Applications, 21(4):
457–466, 2007.

13

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

14

	Introduction
	STRUMPACK
	Iterative refinement
	Mixed-precision

	Implementation
	Matrix casting
	CSRMatrix
	DenseMatrix

	Mixed-Precision Solver
	Solve

	Results
	Poisson Equation
	Consumer-grade hardware
	AMD Ryzen 9 3950X CPU
	Nvidia GeForce RTX 2060 GPU

	High Performance Computing Hardware

	Ill-conditioned matrices
	Conclusion

